Rotation Dynamics
What do we gain from the perspective of points circle ar a set of equivalence classes?

Recall The circle can be thought of as the set of equivalence classes

$$
\begin{aligned}
{[x] } & :\{\ldots,-4 \pi+x,-2 \pi+x, x, x+2 \pi, \ldots\} \\
& :=\{k \text { such that" } \\
& =\left\{2 \pi+k^{*}: k \in \mathbb{Z}\right\} \text { the integers }
\end{aligned}
$$

$$
\uparrow
$$

heed to tell what the conditions on k are
in words:
"the set of all numbers $2 \pi k+x$, where K is an integer"

Yesterday: the geometry of equiv. classes today: the algebra of equivalence classes.

Idea: Develop addition on equivalence classes

Define: $A+B:=\{x+y: x \in A, y \in B\}$
example:

$$
\begin{aligned}
A & =\{1,2\}, B=\{3,4\} \\
A+B & =\left\{\begin{array}{c}
1+31+4,2+3 \\
4,5,5,6\}
\end{array}\right. \\
& =\{4,5,6\} \leftarrow \text { duplicates listed once }
\end{aligned}
$$

Theorem for any equiv. classes $[x],[y]$,

$$
[x]+[y]=[x+y] .
$$

Proof] Well show that $[x]+[y] \subseteq[x+y]$ and that $[x+y] \subseteq[x]+[y]$.

First: choose some $z \in[x]+[y]$.
By definition of set addition,

$$
z=(x+k \cdot 2 \pi)+(y+l \cdot 2 \pi)
$$

for some $k, l \in \mathbb{Z}$.

$$
=(x+y)+2 \pi(k+l) \text { factor ont } 2 \pi
$$

Since $k+e$ is an integer, $z \in[x+y]$.
Now, we show that $[x+y]<[x]+[y]$.
Let $w \in[x+y]$.
So by definition

$$
\omega=x+y+2 \pi m
$$

Can split m into the sum of any two integers whose sum is m. Simplest choice is 0 and m,

$$
\omega=(x)+(y+2 \pi m)
$$

since $x \in[x]$ and $y+2 \pi m \in[y]$, we have
that $w \in[x]+[y]$.
means we've proved the thing we wanted to prove.

Observations
identity property

$$
\begin{aligned}
& \text { (a) }[0]+[x]=[x] \\
& \text { associativity property } \\
& \text { (b) }([x]+[y])+[z]=[x]+([y]+[x])
\end{aligned}
$$

existance of inverses

$$
\text { (c) }[-x]+[x]=[0]
$$

these properties give that $\mathbb{R} / 2 \pi \mathbb{Z}$ is
a group with the operation of set addition bonus property

$$
\text { (d) }[x]+[y]=[y]+[x]
$$

Rotation Dynamics

Define $R_{\theta}: \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$

$$
R_{\theta}([x])=[x+\theta]=[x]+[\theta]
$$

This is exactly the circle rotation by angle θ.
Goats "Therm" Note: these donot imply ore another Thu If $\theta=\frac{P}{Q} \cdot 2 \pi$, every point on the circe has period Q.

Thu If there exists a periodic point of period of for the circle rotation by θ, then $\theta=2 \pi \frac{p}{q}$ for some $p \in \mathbb{Z}$.

$$
\frac{1}{3} 2 \pi=\frac{2 \pi}{3}
$$

each orbit has 3 points and are disjoint

A formula for $R_{\theta}^{k}([x])$

$$
\begin{array}{r}
R_{\theta}^{k}([X])=[X+k \theta] \text { for all } k \in \mathbb{Z} \\
k \geqslant 1 .
\end{array}
$$

$$
k \geqslant 1 .
$$

Proof) (by induction)

$$
k=1 \Rightarrow k=2 \quad k=3 \quad \ldots \quad k=99 \quad k=100 \ldots
$$

write a proof for
base case
then prove if I know previous one, I can deduce the next one the inductive step
works like dominos

Proof of base case)
check that $R_{\theta}^{\prime}[[x])=[x+1 \theta]$
true from the definition
Proof of inductive step) Assume that it holds for K and prove that it holds for $k+1$.
Assume it holds for $R_{\theta}^{k}([x])=[x+k \theta]$
by of of iterates
Then $R_{\theta}^{k+1}([x])=R_{\theta}\left(R_{\theta}^{k}([x])\right)$

$$
\begin{aligned}
& =R_{\theta}([x+k \theta]) \text { def of } R_{\theta} \\
& =[x+k \theta]+[\theta] \\
& =[x+k \theta+\theta] \text { property of set set } \\
& =[x+\theta(k+1)] \text { factoring }
\end{aligned}
$$

